150 research outputs found

    Flexible and accurate inference and learning for deep generative models

    Get PDF
    We introduce a new approach to learning in hierarchical latent-variable generative models called the "distributed distributional code Helmholtz machine", which emphasises flexibility and accuracy in the inferential process. In common with the original Helmholtz machine and later variational autoencoder algorithms (but unlike adverserial methods) our approach learns an explicit inference or "recognition" model to approximate the posterior distribution over the latent variables. Unlike in these earlier methods, the posterior representation is not limited to a narrow tractable parameterised form (nor is it represented by samples). To train the generative and recognition models we develop an extended wake-sleep algorithm inspired by the original Helmholtz Machine. This makes it possible to learn hierarchical latent models with both discrete and continuous variables, where an accurate posterior representation is essential. We demonstrate that the new algorithm outperforms current state-of-the-art methods on synthetic, natural image patch and the MNIST data sets

    A neurally plausible model learns successor representations in partially observable environments

    Get PDF
    Animals need to devise strategies to maximize returns while interacting with their environment based on incoming noisy sensory observations. Task-relevant states, such as the agent's location within an environment or the presence of a predator, are often not directly observable but must be inferred using available sensory information. Successor representations (SR) have been proposed as a middle-ground between model-based and model-free reinforcement learning strategies, allowing for fast value computation and rapid adaptation to changes in the reward function or goal locations. Indeed, recent studies suggest that features of neural responses are consistent with the SR framework. However, it is not clear how such representations might be learned and computed in partially observed, noisy environments. Here, we introduce a neurally plausible model using distributional successor features, which builds on the distributed distributional code for the representation and computation of uncertainty, and which allows for efficient value function computation in partially observed environments via the successor representation. We show that distributional successor features can support reinforcement learning in noisy environments in which direct learning of successful policies is infeasible

    The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction

    Get PDF
    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex

    Kernel Instrumental Variable Regression

    Get PDF
    Instrumental variable (IV) regression is a strategy for learning causal relationships in observational data. If measurements of input X and output Y are confounded, the causal relationship can nonetheless be identified if an instrumental variable Z is available that influences X directly, but is conditionally independent of Y given X and the unmeasured confounder. The classic two-stage least squares algorithm (2SLS) simplifies the estimation problem by modeling all relationships as linear functions. We propose kernel instrumental variable regression (KIV), a nonparametric generalization of 2SLS, modeling relations among X, Y, and Z as nonlinear functions in reproducing kernel Hilbert spaces (RKHSs). We prove the consistency of KIV under mild assumptions, and derive conditions under which convergence occurs at the minimax optimal rate for unconfounded, single-stage RKHS regression. In doing so, we obtain an efficient ratio between training sample sizes used in the algorithm's first and second stages. In experiments, KIV outperforms state of the art alternatives for nonparametric IV regression.Comment: 41 pages, 11 figures. Advances in Neural Information Processing Systems. 201

    Prediction under Latent Subgroup Shifts with High-Dimensional Observations

    Full text link
    We introduce a new approach to prediction in graphical models with latent-shift adaptation, i.e., where source and target environments differ in the distribution of an unobserved confounding latent variable. Previous work has shown that as long as "concept" and "proxy" variables with appropriate dependence are observed in the source environment, the latent-associated distributional changes can be identified, and target predictions adapted accurately. However, practical estimation methods do not scale well when the observations are complex and high-dimensional, even if the confounding latent is categorical. Here we build upon a recently proposed probabilistic unsupervised learning framework, the recognition-parametrised model (RPM), to recover low-dimensional, discrete latents from image observations. Applied to the problem of latent shifts, our novel form of RPM identifies causal latent structure in the source environment, and adapts properly to predict in the target. We demonstrate results in settings where predictor and proxy are high-dimensional images, a context to which previous methods fail to scale

    Learning interpretable continuous-time models of latent stochastic dynamical systems

    Get PDF
    We develop an approach to learn an interpretable semi-parametric model of a latent continuous-time stochastic dynamical system, assuming noisy high-dimensional outputs sampled at uneven times. The dynamics are described by a nonlinear stochastic differential equation (SDE) driven by a Wiener process, with a drift evolution function drawn from a Gaussian process (GP) conditioned on a set of learnt fixed points and corresponding local Jacobian matrices. This form yields a flexible nonparametric model of the dynamics, with a representation corresponding directly to the interpretable portraits routinely employed in the study of nonlinear dynamical systems. The learning algorithm combines inference of continuous latent paths underlying observed data with a sparse variational description of the dynamical process. We demonstrate our approach on simulated data from different nonlinear dynamical systems

    Successor-Predecessor Intrinsic Exploration

    Full text link
    Exploration is essential in reinforcement learning, particularly in environments where external rewards are sparse. Here we focus on exploration with intrinsic rewards, where the agent transiently augments the external rewards with self-generated intrinsic rewards. Although the study of intrinsic rewards has a long history, existing methods focus on composing the intrinsic reward based on measures of future prospects of states, ignoring the information contained in the retrospective structure of transition sequences. Here we argue that the agent can utilise retrospective information to generate explorative behaviour with structure-awareness, facilitating efficient exploration based on global instead of local information. We propose Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algorithm based on a novel intrinsic reward combining prospective and retrospective information. We show that SPIE yields more efficient and ethologically plausible exploratory behaviour in environments with sparse rewards and bottleneck states than competing methods. We also implement SPIE in deep reinforcement learning agents, and show that the resulting agent achieves stronger empirical performance than existing methods on sparse-reward Atari games
    • …
    corecore